Localizzatore GPS con SMS

Aggiornato il 25 Apr 2017 – Finito!
Ho deciso di progettare e costruire un semplice localizzatore GPS dopo un viaggio in macchina. Quando, dopo centinaia di Km di strada, sono arrivato a destinazione, ho parcheggiato l’auto ed ho citofonato alle persone che ero andato a trovare. Ho detto: “Posso lasciare qui la macchina ?” e mi è stato risposto: “Sì, c’è la telecamera”. Bene, avevamo punti di vista diversi sul lasciare lì la macchina! Io intendevo: “dà fastidio se la lascio qui ?” e loro: “lasciala pure lì, che se tentano di fregartela lo vediamo dalla telecamera”… Così ho deciso di realizzare questo localizzatore, da nascondere nell’auto quando vado fuori. La mia automobile non è “preziosa”, ma andare in auto e tornare in treno è… scocciante!

Inizialmente avevo pensato di realizzare la cosa usando un vecchio smartphone, creando una App in grado di fare ciò che mi serviva; poi, invece, ho deciso di usare un paio di modulini comprati su Internet. Ho sempre scritto volentieri le mie App, che poi ho pubblicato in forma gratuita su Google Play, ma recentemente ne ho dovute cancellare un paio perché mi è arrivato l’avviso di pubblicare una pagina di “privacy policy” a causa dell’uso della telecamera interna del telefono. Ora, l’uso della telecamera era assolutamente “pulito”, non carpivo dati sensibili dell’utente (non me ne può fregare di meno), ma la “dura lex” impone di scrivere una pagina in linguaggio “da legali” per avvisare l’utente che scarica l’App dal Market. Allora, dato il mio odio profondo per la burocrazia e per le cose inutili, ho deciso di rimuovere le App coinvolte e di non scriverne altre che richiedano di seguire la vigente normativa europea. In un tempo in cui tutti pubblicano ogni cosa della loro vita, VOLONTARIAMENTE, sui “Social”, le leggi europee sulla privacy mi sembrano delle autentiche fesserie. Purtroppo, però, le multe per inadempienza sono molto, molto salate e quindi io smetto di pubblicare App gratuite e stop.

La struttura hardware

Il localizzatore è molto semplice; usa un modulo GPS con uscita seriale che si compra su Internet a meno di 8 Euro e un modulo GSM M-590 in kit che ho pagato addirittura meno di 3 Euro!  I moduli sono collegati ad un microcontrollore Atmel ATmega48V che gestisce tutte le operazioni necessarie con un apposito firmware che ho scritto in C. Per quanto riguarda il modulo GSM, consiglio di leggere questo mio articolo che lo descrive in modo approfondito. Attenzione: il modulo GSM dovrà essere inizializzato preventivamente (vedi articolo citato, comando: AT+IPR=2400^M^J) per forzare la velocità della porta seriale. Questo è necessario in quanto il micro ATmega48V ha una sola UART e questa è usata per il modulo GPS con protocollo 9600,N,8,1. Ho dovuto quindi implementare una seconda seriale da software e prudentemente ho usato una velocità bassa (2400 BPS) per il GSM.

Se volete ulteriori notizie sul modulo GPS GY-NEO6 MV2, questo è il link da cui si può scaricare il datasheet. Nella figura sottostante potete vedere un esempio dell’output seriale, catturato con il programma di terminale seriale RealTerm impostato a 9600,N,8,1. Le righe evidenziate in giallo sono quelle che vengono usate dal firmware per determinare la posizione (latitude-longitude) attuale.

Il modulo GPS può essere utilizzato senza alcuna modifica hardware. La cosa veramente importante è di non superare mai il limite di 3.6V per l’alimentazione.

Il modulo GSM M-590, invece, arriva in kit (scatola di montaggio) e deve essere costruito. Il montaggio non è complicato, anche se si tratta di componenti smd. La parte difficile è saldare i led, che… tendono a rompersi! Quelli forniti con il kit sono molto, molto delicati. Consiglio di comprarne altri in package 0805 e usare molta pazienza e accuratezza nella saldatura. E’ imperativo l’uso di un buon saldatore. Lo schema del modulino è riportato nella figura sottostante.

Le zone evidenziate indicano le modifiche da fare. Il diodo D2 non sarà montato. Al suo posto si metterà un ponticello. La resistenza R4 da 4.7 KOhm sarà montata sui pin del connettore (vedi figura sotto), così come i condensatori C2 da 100nF e C3 da 22 pF. Il condensatore C1 non sarà montato. In pratica, il modulo sarà collegato al circuito a microcontrollore con 4 fili: Vgsm, GND, GSM_RX e GSM_TX.

Vediamo infine lo schema del circuito a microcontrollore. Come anticipato, si basa sul micro Atmel ATmega48V che ha 4KB di Flash, 256 Bytes di EEprom e 512 Bytes di Ram.

Se volete leggere lo schema con maggior chiarezza, scaricate il PDF da questo link. Nello schema è prevista l’alimentazione tramite una batteria ricaricabile Li-ion da 3.7V. L’assorbimento del circuito può andare da 50 a 250mA, con brevi picchi di 2A in funzione delle varie fasi operative dei moduli GPS e GSM. La durata della batteria, quindi, dipende dalla sua capacità. Una cella Li-ion a piena carica ha una tensione di 4.2V e scende a 3.7V quando la carica residua è circa del 10%. La tensione ideale per l’alimentazione del circuito è di 3.9V ; funziona anche con qualcosa di meno, ma il rischio è che il modulo GSM non riesca più ad inviare gli SMS. Notate che alcune batterie Li-ion di formato AA mostrano in etichetta una capacità molto elevata, ma spesso questa indica che la cella stessa può dare quella corrente, superiore alla nominale, per un periodo limitato di tempo. In pratica, in alcune applicazioni (in genere dove c’è un motorino elettrico) è necessario avere un corrente alta per un periodo di tempo breve e allora, queste batterie sono idonee allo scopo. Per un consumo “leggero” e continuativo, invece, bisogna guardare alla capacità reale della batteria. Un metodo infallibile per misurare questa capacità è quello di mettere in carica la batteria con una sorgente di cui si conosca l’erogazione di corrente. Facciamo un esempio: se io ho un caricabatterie settato per dare una corrente max di 300mA e la batteria si ricarica completamente in 4 ore, potrò dire con una certa sicurezza che è una cella da 1200mA (anche se c’è scritto sopra “4800mA”). Attenzione ! Se alimentate il circuito a batteria, dovete assicurarvi di disconnetterla quando si scarica oltre una certa soglia. Le celle Li-ion, se scendono al di sotto di 2.75V, perdono la capacità di ricaricarsi ! Alcuni modelli di celle sono protetti da un circuito interno contro l’over-charge e l’under-voltage, ma questa caratteristica NON è comune. Gran parte delle batterie low-cost non sono protette, quindi è compito vostro averne cura…

Se invece vogliamo alimentare il circuito a 12V, possiamo usare un regolatore lineare o uno switching. Nella figura sotto potete osservare lo schema di un regolatore lineare (super collaudato) in grado di fornire 3.9V stabilizzati. Sul regolatore andrà montato un piccolo dissipatore.

La struttura del software

Il software è scritto in linguaggio C ed è strutturato in due tasks indipendenti: 1) il gestore del modulo GPS e 2) il gestore del modulo GSM. I due tasks sono non-bloccanti e un watchdog si occupa di resettare il micro qualora uno di essi dovesse restare bloccato per più di 2 secondi.

Il task GPS si occupa di rilevare la posizione Lat – Lon quando il modulo la invia da seriale. Viene utilizzato il record NMEA di tipo $GPGGA, che viene generato quando il ricevitore ha “agganciato” un numero sufficiente di satelliti. I dati vengono salvati in un array di bytes in Ram che sarà poi utilizzato come testo dello SMS inviato a seguito di una richiesta. Il buffer è organizzato in modo da contenere la posizione corrente e 5 posizioni precedenti, prese a distanza di 60 campionamenti validi ognuna. In questo modo, se il ricevitore non vede più il cielo, in memoria restano almeno le ultime 5 posizioni valide prima della perdita della visuale. Questa memoria non viene azzerata al reset del micro (l’array è definito con la clausola __no_init), ma viene solo formattata in modo adeguato. Al primo reset (al power-on) la Ram ha dati casuali e quindi la routine di inizializzazione sostituisce con degli “spazi” ogni carattere fuori range. Se il reset è a caldo, quindi con il circuito già alimentato, i dati contenuti nel buffer saranno probabilmente validi e quindi l’inizializzazione non apporterà correzioni.

Il task GSM si occupa di verificare se ci sono chiamate dai numeri abilitati e in caso ci siano, si occupa di inviare un SMS con il testo elaborato dal task GPS, con le coordinate del dispositivo. La prima operazione dopo il reset è quella di aspettare la stringa “+PBREADY” dal modulo. Questa stringa ci conferma che il modulo è attivo e registrato sulla rete dell’operatore. La SIM deve essere preparata in modo da non richiedere un PIN per l’attivazione. E’ inoltre opportuno disabilitare ogni servizio non necessario (segreteria, messaggi automatici, ecc). Una volta ricevuta la conferma di registrazione, il software invia al modulo il comando “AT+CLIP=1” che avvia il servizio di identificazione del chiamante. In pratica, quando si riceve una chiamata, oltre alla classica stringa “RING” si riceve un altro messaggio “AT+CLIP:” seguito dal numero di telefono del chiamante. Il numero ricevuto è comparato con i due numeri abilitati (memorizzati in EEPROM, vedremo poi come) e se il confronto è positivo il messaggio SMS viene inviato al chiamante quando questo chiude la chiamata (nota: il dispositivo non “risponde” alla chiamata, non ci sono costi addebitati sul telefono che chiama). La chiusura della chiamata viene recepita con il messaggio “NO CARRIER”. Il task quindi invia l’SMS e attende la conferma dell’avvenuto invio e poi riprende il suo ciclo con la fase di attesa di nuove chiamate. Se invece qualcosa va storto, il task esegue un reset del modulo GSM togliendo brutalmente alimentazione al modulo stesso, pilotando un pin di uscita del microcontrollore che è collegato ad uno switch elettronico realizzato con due mosfet P-N (vedi schema). Questa soluzione può sembrare eccessiva e costosa, ma il datasheet del costruttore del modulo M-590 consiglia, in casi in cui non si riesca a ripristinare il modulo con il comando software, di togliere alimentazione… e così ho deciso di tagliar corto e di usare questa soluzione comunque, senza perdere tempo con il comando software. Ovviamente, dopo questa operazione di riavvio del modulo, il task GSM riparte dallo stato iniziale, attendendo il messaggio “+PBREADY” prima di ogni altra operazione.

Costruzione ed utilizzo

Come si vede dalla foto del dispositivo in testa all’articolo, non c’è un circuito stampato per il microcontrollore, ma il tutto è assemblato su di una scheda “millefori” per prototipi. Data la semplicità del circuito e data la natura “sperimentale” del progetto, ho deciso per questa soluzione. I componenti sono pochi e chiunque abbia una certa pratica di costruzioni elettroniche può riuscire a realizzare il localizzatore, con un po’ di pazienza. Naturalmente, non è il progetto ideale per chi è alle prime armi e non ha la padronanza del saldatore e un po’ di pratica con i prototipi elettronici.

Una volta costruito il circuito, si dovrà programmare il microcontrollore. Per la programmazione del microcontrollore io utilizzo il programma AvrDude, disponibile a questo link. Troverete, nel file zip di questo progetto, tre files batch che servono a programmare, rispettivamente, la memoria Flash, la EEPROM e i FUSES (fusibili) con la configurazione necessaria per questa applicazione. I files batch prevedono che il programma AvrDude sia installato e raggiungibile con il percorso impostato. Modificate i files batch secondo le vostre esigenze, adattandoli per il percorso dell’applicazione e per il modello di programmatore usato.

1_wrFlash.bat per la programmazione della memoria Flash:

avrdude -P com14 -p m48 -c stk500 -e -U flash:w:localizer.hex
pause

2_wrEeprom.bat per la programmazione della memoria EEPROM:
avrdude -P com14 -p m48 -c stk500 -U eeprom:w:earom-wr.bin
pause

3_wrFuses.bat per la programmazione dei FUSES:
avrdude -P com14 -p m48 -c stk500 -U hfuse:w:0xC5:m -U lfuse:w:0xFC:m
pause

Come si vede dal contenuto dei files batch, il programmatore che uso è di modello stk500 ed è collegato sulla porta com14. Le operazioni di programmazione saranno eseguite nell’ordine: 1) scrittura della memoria Flash, 2) scrittura della memoria Eeprom, 3) scrittura dei Fuses.

Per rendere il dispositivo in grado di funzionare, dobbiamo modificare il file earom-wr.bin per inserire i due numeri di telefono che saranno autorizzati a comandare l’invio del messaggio SMS da parte del dispositivo. Vediamo un esempio di tale file aperto con l’applicazione FrHed, scaricabile a questo link.

Evidenziati in giallo ci sono i due numeri. Quelli nell’immagine non sono numeri “veri”, servono solo per far capire dove e come scrivere quelli “reali”. Con FrHed è possibile modificare i valori sia in ASCII, spostando il cursore di editing sulla finestra a destra, sia in Hexadecimal, spostandolo a sinistra. Il numero programmato dovrà essere preceduto dal prefisso internazionale, perché così viene ricevuto dal modulo GSM (vedi esempio sotto).

In pratica, se usiamo un telefono con SIM italiana, il numero inizierà con 39. E’ fondamentale chiudere il numero con il valore Hex 00, che viene usato come terminatore di stringa dal linguaggio C. Nell’immagine di esempio i due numeri programmati sono: 39 333 1234567 e 39 339 7654321; modificateli secondo le vostre esigenze e quindi salvate il file aggiornato. Ora sarà possibile trasferire i numeri nella EEPROM del microcontroller eseguendo il file batch WrEarom.bat.

Il file che contiene il firmware del micro è localizer.hex, che contiene il codice compilato dall’indirizzo 0x0000 a 0x096F. Rimane quindi molto spazio per eventuali aggiornamenti e migliorie.

Una volta programmato il micro, si potrà accendere il dispositivo. Nello schema potete vedere un connettore di uscita denominato USB SERIAL. A che serve ? E’ uno strumento di debug. Dato che il modulo GPS occupa solo il pin di ingresso della UART del micro, ho pensato di usare quello di uscita come pin di debug. Su questo pin, infatti, viene inviata tutta una serie di messaggi di testo, con protocollo 9600,N,8,1. Quando il modulo GPS determina una nuova posizione valida, i dati “filtrati” vengono inviati sull’uscita di debug e così sono visibili su un terminale seriale connesso alla porta. Oltre a questo, anche le comunicazioni con il modulo GPS vengono replicate su questa porta, permettendo così di analizzare tutta la comunicazione tra il micro e i due moduli. E’ una “feature” molto importante e molto utile per capire cosa c’è che non va (se c’è qualcosa che non va).

Ora portiamo il circuito funzionante all’aperto e facciamo un giro per almeno 5 minuti, cercando di spostarci in modo da avere diverse localizzazioni in memoria. Se siamo pigri, mettiamo il circuito sul terrazzo e lasciamolo lì fermo… Dopo 5 o sei minuti, con uno dei telefoni il cui numero è abilitato in Eeprom, facciamo una chiamata al numero della SIM contenuta nel localizzatore. Facciamo fare uno o due squilli e poi chiudiamo. Il localizzatore invierà immediatamente uno SMS di risposta con i dati memorizzati (ci può essere un ritardo nella ricezione del messaggio se l’operatore è “intasato”). Riceveremo quindi un messaggio di questo tipo (ho pixellato alcune cifre per la privacy -la mia-) :

Vediamo in prima posizione la locazione attuale, l’ultima rilevata dal GPS al momento della chiamata. Nelle successive righe ci sono le ultime 5 posizioni memorizzate, in base ad un temporizzatore che agisce ogni 60 localizzazioni valide (record $GPGGA del protocollo NMEA).

Le coordinate ricevute dal modulo sono in formato ggxx.xxxxxN(S) per la latitudine e gggxx.xxxxxE(W) per la longitudine. Purtroppo, se proviamo ad inserire i dati esattamente così come li riceviamo su un programma tipo Maps, non otterremo risultati. Dobbiamo quindi fare un paio di semplici operazioni.

Supponiamo di avere ricevuto questo messaggio: 3804.373568N01538.944818E; le prime cifre (fino a N) sono la latitudine e le ultime (fino a E) sono la longitudine. Per convertire questo formato in uno accettabile per Maps, dobbiamo agire così: latitudine 3804.373568N dove 38 sono i gradi; ora dividiamo 04.373568 per 60 e otteniamo 0,0728928; in totale, la latitudine risultante sarà: 38.0728928. Ripetiamo la stessa operazione per la longitudine: 01538.944818E dove 015 sono i gradi; ora dividiamo 38.944818 per 60 e otteniamo  0,6490803; in totale, la longitudine è 15.6490803. Ora possiamo andare su Maps ed inserire nella barra di ricerca questi numeri: 38.0728928, 15.6490803 ed otterremo la mappa della località indicata. Notare, nel formato, che come separatore per i decimali viene usato il “punto”, mentre per dividere i due campi lat – lon viene usata la “virgola”. Per convenzione, la latitudine è indicata per prima e la longitudine per seconda. Nel nostro esempio abbiamo usato latitudine Nord (N) e longitudine Est (E). Se usiamo il programma in altre parti del mondo, potremmo ricevere dal GPS coordinate S (Sud) e W (West). In questi casi, dovremo inserire un segno “meno” prima della latitudine o della longitudine. In breve, N è “più” (si può omettere) ed S è “meno”, così come E è “più” e W è “meno”.

Infine, qui sotto, dopo la clausola di non assunzione di responsabilità, trovate il link al file Localizer-v1.zip liberamente scaricabile, che contiene la prima release del firmware. L’applicazione è stata provata in condizioni “normali” e funziona perfettamente, ma se scoprirò errori nascosti, farò le opportune correzioni e pubblicherò l’aggiornamento.

Clausola di non assunzione di responsabilità.
Il programma o software descritto, liberamente prelevabile dal sito, è da considerarsi una “demo” gratuita e pertanto l’autore Emilio P.G. Ficara non fornirà alcun supporto, né si assumerà alcuna responsabilità per ogni eventuale problema, danno o conseguenza che dovesse presentarsi nel download o nell’esecuzione dell’applicazione.

Cliccando questo link per effettuare il download del file implicitamente dichiarate di aver letto e capito la clausola di non assunzione di responsabilità e di accettarla.

Verificate sempre il checksum MD5 dei files che scaricate ! In questo caso deve essere: F0E6090B3CB2A96E4FEF0C5D5A0BB131 ; se è diverso, il file è corrotto o non è quello originale, quindi non scompattatelo e buttatelo via ! Se invece è tutto ok, potete scompattarlo (è richiesta una password che è: eficara).

Smartphone WM6 – GPS tracker

GPS Tracker: crea un file .kml con le coordinate ricevute da un GPS

Questo programmino serve a visualizzare le coordinate GPS del punto dove ci si trova e per creare un file .kml (google maps) con la traccia del percorso. Il file minigps.kml generato nella directory My Documents, può essere visualizzato con google maps sullo smartphone o sul PC una volta trasferito su di questo. Nota importante: assicuratevi di avere una connessione internet “flat” sul cellulare se volete usare Google Maps o Google Earth ! Altrimenti, il vostro credito telefonico ne soffrirà parecchio…
Per ricevere le coordinate GPS si può utilizzare un ricevitore esterno Bluetooth o uno interno, se disponibile (sul mio Samsung i600 non c’è). Attenzione: la funzione “Stop Log / Save” salva i dati sempre sullo stesso file (minigps.kml), quindi se vi interessa conservare un tracciato, copiate il file salvato su uno nuovo, con un altro nome.
Il file .cab contenuto nel file .zip disponibile per il download è autoinstallante. Una volta estratto e trasferito sullo smartphone WM6, basta cliccarlo per avviare l’installazione ; vi verrà richiesta l’autorizzazione a procedere perché l’autore è sconosciuto a Micro$oft, ma l’autore sono io 🙂 Una volta eseguita l’installazione, troverete una nuova icona nell’elenco programmi, con il nome MiniGps. Se le impostazioni della porta seriale non corrispondono a quelle del vostro sistema, editate con blocco note il file minigps.ini

Compatibilità: Smartphone WM6 (Windows Mobile 6)

screenshot applicazione


screenshot dell’applicazione ; la scrissi in Francia, come si evince dalle coordinate che appaiono in figura…

Nota per il download : non viene fornita nessuna garanzia implicita o esplicita di funzionamento del programma. Non mi assumo nessuna responsabilità per eventuali problemi si dovessero presentare sul dispositivo dove l’applicazione verrà installata. Il programma è un “dimostrativo” e non viene fornita assistenza, né supporto di alcun genere. Scaricando ed installando il programma, accettate implicitamente le mie condizioni di non assunzione di responsabilità. Se non siete d’accordo, non scaricate il file e non installatelo !

Ho letto e compreso la nota, voglio scaricare il file minigps.zip (475 KB)
(ultimo aggiornamento: V1.03 25/08/09) il file .zip contiene il .cab per l’installazione diretta

Get serial data from USB GPS receiver

Some years ago, I purchased a “GPS mouse”, a device that has magnetic base and connects to PC USB port to give GPS position to navigation program. I remember I purchased, also, a true licensed copy of Microsoft’s Autoroute 2005 program. This means I’m speaking about a device at least 7 years old…

Recently, I reloaded the software on a very old notebook that is normally hidden under the seat in my car ; it is just for emergency situations (I am able to lost even in a well known regions).

Good, having tried a new route and noticed that the way was every minute much harder, and forced to admit that it terminates on the gate of a haunted house, I tried to make a position search using the GPS receiver with the notebook.

But there was a problem… the device, when connected to the notebook, makes it turning off ! It was like a short circuit on USB connector. So, no position, no help, no GPS. I did my route backside until recognized a known road…

Ok, when at home, I decided to open the GPS receiver to look inside and indagate on the reason of such short circuit. The receiver model is BU-303 and has 2 hidden screws under a rubber plate that covers the magnet (I never attached the device on my car’s top, ‘cause it was originally good to connect satellites even if used inside the car). So, after removing the rubber plate and the screws, I opened the box. Oh, there is a very small battery inside, probably to retain some satellites data when powered off. This small battery was rated for 3.3Volts… Hmmm, using my multimeter to measure the residual charge, I read exactly ZERO volt. The battery is gone. Ok, it was directly  soldered on the circuit and I removed it easily. Now, connecting the USB to a notebook, all worked fine.

I decided to look inside and discovered, after removing a metallic shield, one unused option. As you can see in the picture below, the device can have USB or RS-232 connection !!! The unmounted IC seems (looking at the connections) very similar to one classic MAX232 or equivalent.

Connecting an oscilloscope and measuring the most probable pins, I discovered that the serial output was present on pin 11 of the missing IC, with amplitude of about 3V and protocol 4800,N,8,1. Also it was evident that with a small wire to connect one pad to the very near opposite, that signal can be “routed” to an easy point of the circuit to solder on, so the shield could be soldered again in its place. So I soldered a very small wire to the contacts as in figure :

The yellow dots are the points connected together. It was not easy… But at the end I mounted again the metallic shield on, and soldered 3 wires to make power and serial connections as in the final picture here :

Now, the circuit can be powered from 5V ( also tested and working at 3.3V ) and on the wire S-out you can get (at TTL level, around 3V) the various NMEA sentences that can be read, for example, from a microcontroller to make a satellite localization system, adding a GSM phone module to send you the actual position of your car via sms.

I also tried to connect the circuit to the debug port ( ttyS0 ) of a cheap Android tablet, but unfortunately the ttyS0, when forced by software commands to run at 4800 BPS, on such hardware (WM8650 based) can’t set the right baud rate and “shifts” automatically to 9600, that obviously isn’t useful for this work.

Anyway, I hope this will be useful for someone….